

 4

Java and FlagShip
“A prosper future is made of promoting

communities like Linux community.
Here it is one more a seed…”

 I should admit before hand that I appreciate
very much Flagship language. Even though Flagship
was born with some advanced features, for instance:
objects, inline C, etc. it still has lacking of some
attributes that distinguish modern languages. It is
not the time to expose those missing features; it is a
computer language that allowed us using old
Clipper source code and in many ways it stretched
the lifetime of several of our systems. Recently
Visual Flagship was put on the market with the
main goal of creating visual user interfaces. For
those people who tried it have realized that in fact
visual user interfaces
could be created, but far
from the beauty and
sophistication of others
languages. So, how to
create a true visual user
interface – like those
produced by Delphi or
VisualBasic, etc. – and
mix it with FS code?
Even better, is that
possible?
 The answer is
made up of four letters: J-
A-V-A. Java is, in my opinion, one of best languages
ever created and I intend to prove it by integrating Java
code with Flagship code. Java is not simply a common
computer programming language, it encloses a
revolutionary philosophy about how we should create
systems and this is why big companies such as IBM, HP,
Sun, etc. use it nowadays.
 Before we go any further, please, have a look at
Picture 1. What do you think? The interface was build
using Netbeans running with SkinLF, however,
sometimes I use JBuilder or the simple and powerful
‘vi’. All tools mentioned above are ‘freeware’ or have a
freeware version. In our case those tools were used only
to specify and settle position of visual components on the
‘frame’. That part of the job may be viciously pleasant.
Lets split our mission in three parts. First we are going

to make use of an advanced feature of Flagship: Objects.
That resource was very well implemented inside FS and I
made use of it for nothing better than using objects to
contact another language strongly object oriented.
Second, inline C; another gracious feature of FS that
allows source code written in C language cohabit to FS
code. Did I say C language? Are we not going to use
Java? Yes. But lets think a little bit about the matter:
Flagship doesn’t direct understand Java, Java in its turn
doesn’t understand Flagship, however both implement a
manner to understand C code. Thus, C shall be our
intermediate language! Smart conclusion! Finally, on the
Third part we will merge everything in order to produce
a real effective user interface. By this time you should be
wondering whether is better or not waiting a bit more for
improvements on Visual Flagship. Read through the
article and see by yourself.

Part One: Objects

Object programming is more clear and efficient
than procedural programming. This section will be more

understandable in case you
reader already know about
object oriented
programming.

We are going to
use elementary concepts of
the object oriented world,
such as methods and
attributes. Clarifying step-
by-step the whole subject
would be an impossibility
since this article would
assume a forbidden
extension for publication.
Picture 2, declares an FS
object.

Do not bother about those colors. They help on
referencing only. Say we are paying homage to ‘vi’. For
didactics purposes we may assume that in green color are
the reserved words responsible for begin a section. In
blue, words that specify data types. In red, the owner
class of a section, and finally in orange object variables
declarers. Others parts are use commonly on FS coding.
That is the basic structure of a FS object. For details,
please do read OBJ section of Flagship manual. There
are many prime code excerpts inside section
CMD:CLASS, INSTANCE – I would read everything in
case I would care about using objects seriously.

 Picture 1

 5

Part Two: inline C

Inline C consists in allowing C code to be
inserted directly into FS code. A detailed description is
given on FS manual, section EXT
under the title Open C System API
– of course once more an
agreeable reading for the
weekend. Multisoft worked very
well on this feature and thanks to
that our ‘mission’ was in many
ways much more easier. Picture
3 shows an inline C code excerpt.

Looking at code on that
picture we can correctly conclude
that we are looking at our well-
known C code. That source code
may be merged directly into a FS
application with no additional
problems. On examples supplied
by FS manual we realized that
even FS variables can be reach
from C code.

Part Three: The Fusion

Java language have the
ability of accessing native resources of the underlying
systems. That can be accomplished using JNI (Java
Native Interface). JNI on Linux is wrapped essentially on

dynamic libraries – commonly with .so file extension –
that linked with certain application or library give to that
application the power of accessing functions explicitly
declared to that purpose. I used the word ‘explicitly’
because some small changes should be applied on
functions declaration. Picture 4 shows that changes.

Another important resource that JNI offers is the
ability of calling a JVM (Java Virtual Machine) from
non-Java applications, for instance, those written using
Flagship. That was precisely what we intended initially,
in another words, we are going to start a JVM from
inside a FS app and put it at our disposal. So, lets make it
work…

Even though it may look, at first glance, a
complex coding it is not really, for things are made

always in the same way. Looking at the code on Picture
5 we realize that first thing the program does is create a
virtual machine. This is obvious since the next functions
have need of a JVM already initialized. On the

following, we opened a DBF
file then we create one index
and ‘RegFunc’ is invoked.
Do not search for that last
function declaration because
it is declared inside our
mediator program written in
C. That function registers
some functions that shall be
called from Java code. We
create an object named
‘ofrm’ (implemented in
‘jvrqjvm.prg’) and the static
method ‘setUI’ of Pesquisa
class is called in order to
activate SkinLF; finally our
user interface is shown.
From now on Java frame
takes control of the
application. In spite of
executing a single record
searching the combination of
Java and FlagShip can be

expanded to do much more useable things, such as:
complex computation of data, DBF manipulation, very
nice user interfaces, etc.

To accomplish that single searching task we
have used some of the most advanced resources on both
languages. So, why not using another advanced resource
like UML (Unified Modeling Language) to show
dependency relations inside our application? Picture 6
shows that the item ‘mediador.c’ is the bridge between
the languages. The remain items are not really new ones.
In fact they play a common role on normal practice on
each of the mentioned languages.

On the diagram and below of each item please

pay attention to the allowed operations . Words on italic
style indicate that even though that method exists it is not
really implemented on that point. For instance, the real

 Picture 2

CLASS jvClass
 INSTANCE jv_clsname := "" AS CHARACTER

ACCESS jv_clsname CLASS jvClass AS CHARACTER
 Return jv_clsname

ASSIGN jv_clsname(vl) CLASS jvClass
 jv_clsname := vl
 Return jv_clsname

METHOD Init(fg_nmcls) CLASS jvClass
 // Todo código contido nesta seção será
 // executado na criação do objeto
 Return

METHOD isValidDate(dt) CLASS jvClass
 Local bRet := .T.
 IF Empty(CtoD(dt))
 bRet := .F.
 Endif
 Return bRet

METHOD ... e assim por diante

.
 .

 Picture 3
#Cinline
{
 for(iCt = 1; iCt <= 10; iCt++)
 {
 fprintf(stderr, ": %i : \r\n", iCt);
 }
}
#endCinline

 Picture 4
#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_print(JNIEnv *env, object obj)
{
 printf("Hello World!\n");
 return;
}

source code of showFrame is inside ‘Pesquisa’ class and
it is not inside FS object ‘jvrqjvm’. Despite of that we
tolerate its appearance in order to get a precise
abstraction. Another reason, obviously, is to demonstrate
that that operation is available to anyone who creates
instances of that class.

Together with the files of this article there is a
Makefile file that specifies in which order the
compilation process must happen. That order is crucial
for the whole process. In another words, you will get
messages errors whether you trying to compile
‘javaflag.prg’ before ‘jvrqjvm.prg’ since the former
depends on the latter. However, ‘javaflag.prg’ do not
depends on ‘Pesquisa’ Java class directly. So, the two
compilation processes can exist at different times. The
foretold situation means such an important fact: In case
you want to update your Java classes you can do it
independently of FS code. This do work in both
directions. There is of course a constrain praying that if
you try to invoke a non-existent method or class a
runtime error will raise.

Well, here it is a way to put together Flagship
and Java, both in peace and very together inside the same
application. We did not solved all possible troubles, but
we believe we set a light over the darkness in which this
subject was inserted in, and we gave to those who want
to start a nice beginning. “Then, in the end, the beginning
is not so hard.”

__
Ricardo Delamar Roque - roque@gdysafety.com.br
First published on Revista do Linux #42 Jun./2003
www.revistadolinux.com.br (Brazilian publication)

 Figura 5
#include "jvclasses.fh"

Function Main()
 IF jvmUpJVM()
 Use "clientes.dbf" Alias cli Shared New
 Index On cli->CODIGO to cli1
 Set Index to cli1
 RegFunc()
 Local ofrm := jvrqJVM{} AS jvrqJVM
 ofrm:setUI()
 ofrm:showFrame()
 Else
 Alert("Erro ao carregar JVM")
 Endif
 Return

Function findCli(codigo)
 Sele cli
 Go Top
 IF DbSeek(Padr(codigo, Len(&(IndexKey(0)))),.F.)
 Return { .T., cli->DESCRICAO }
 Endif
 Return { .F., "Erro na procura de registro" }

Dependency Diagram Picture 6

+main()
+findCli()

javaflag +createJVM()
+destroyJVM()
+registerFlagFunctions()
+findClient()

mediador.c

+findClient()
+setUI()
+showFrame()

Pesquisa

+callStaticVoidMethodA()
+setUI()
+showFrame()

jvrqjvm

layPesquisa

<<language>>
Java<<language>>

FlagShip

Requisites:

- Linux
- Flagship
- Java SDK 1.4

Sites:

JavaSDK – http://java.sun.com
FlagShip – http://www.fship.com
NetBeans – http://www.netbeans.org
SkinLF – http://www.l2fprod.com
Vim – http://www.vim.org
JBuilder – http://www.borland.com/jbuilder
UML – http://www.omg.org/uml
 The full source is available in .zip format for a free download

 6

http://www.fship.com/fs_and_java.tgz
http://www.fship.com/fs_and_java.tgz
http://www.fship.com/fs-and-java.zip
mailto:roque@gdsyfety.com.br
http://www.fship.com

